N,N'-Carbonyldiimidazole as a reagent of choice for the synthesis of thienyl-substituted pyrrolidine-2,5-diones

Mikhail M. Krayushkin,* Felix M. Stoyanovich and Sergei V. Shorunov

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: + 7 095 135 5328; e-mail: mkray@ioc.ac.ru

10.1070/MC2003v013n04ABEH001761

N-tert-Butyloxycarbonylamino-3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidenepyrrolidine-2,5-dione was prepared in 80% yield from the corresponding isomeric hydrazidic acids using N,N'-carbonyldiimidazole, whereas a number of other cyclisation reagents were ineffective.

Within the framework of our investigation of photochromic thiophene derivatives, we had to prepare *N-tert*-butyloxycarbonylamino-3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidenepyrrolidine-2,5-dione. The reaction of 3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidene-2,5-furanidine-dione¹ (fulgide) **1** with *tert*-butyloxycarbonylhydrazine was chosen as the best synthetic pathway. Note that the synthesis of fulgide **1** is multistage; therefore, a simple and efficient method leading from compound **1** to *N-tert*-butyloxycarbonylamino-3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidenepyrrolidine-2,5-dione **8** and its derivatives is of prime interest.

The reaction between 1 and *tert*-butyloxycarbonylhydrazine in refluxing benzene for 40 h led (Scheme 1) to a mixture of isomeric hydrazidic acids 2 and 3 in 82% yield (in a ratio of 3:1, as was determined by HPLC (eluent: acetonitrile–aqueous phosphate buffer, 60:40). However, the preparation of aminoimide 8 from acids 2 and 3 unexpectedly appeared to be a challenge. Whereas the standard cyclisation reagents (*e.g.*, acetyl chloride or trifluoroacetic anhydride) were unsuitable since their application would cause inevitable cleavage of the Boc group, all our

attempts to prepare compound **8** from acids **2** and **3** using protocols for the conversion of sensitive amido acids to imides were unsuccessful. The yields of compound **8** were low, or no traces of **8** at all were detected (Table 1). Furthermore, in a number of experiments, isoimides **4** and **5** (identified by their IR and mass spectra †), which are isomeric to **8**, were formed as major products. The attention should be devoted to the fact that attempts to isomerise isoimides **4** and **5** to **8** in accordance with previously described methods^{2,3} were fruitless. Thus, even the prolonged (for 100 h) reflux of isoimides **4** and **5** in THF or benzene with triethylammonium acetate or sodium acetate did not cause the expected isomerisation to **8** and only starting compounds **4** and **5** were detected.

It is well known that *N*,*N*'-carbonyldiimidazole (CDI) reacts readily with carboxylic acids to form acylimidazolides, which are potent acylating agents. Thus, CDI can be applied to the cyclisation of amido acids to imides.⁶ This property of CDI allowed us to assume that it can promote the required cyclization of 2 and 3 to 8. Indeed, the reaction of acids 2 and 3 with CDI in THF for 4 h at room temperature afforded 8 in 80%

NHBoc

10

Table 1 Reactions of compounds 2 and 3 with cyclisation reagents.

	_		-	
Reagent	Conditions	Yield of 8 (%)	Notes	Ref.
Thermal dehydration	Heating in DMF or refluxing in <i>m</i> -xylene	0	Heavy formation of tar	
Ti(OPr ⁱ) ₄	THF, room temperature, 24 h	0		4
ClCO ₂ Et–Et ₃ N	$\mathrm{CH_2Cl_2}, 0$ °C, 1 h	0	Isoimides 4 and 5 as major products	2
Dicyclohexylcarbo- diimide (DCC)	CH ₂ Cl ₂ , room temperature, 3 h	10	Isoimides 4 and 5 as major products	2, 3
Me ₃ SiNHSiMe ₃ - ZnCl ₂	PhH, reflux, 4 h	26		5
HC(OMe) ₂ NMe ₂	THF, room temperature, 48 h	30		
Ac ₂ O–Et ₃ N	CH ₂ Cl ₂ , 0 °C, 3 h	36	40% isoimides	2
<i>N,N'</i> -carbonyl-diimidazole	THF, room temperature, 4 h	80		6

yield. The five-membered imide ring is formed apparently *via* intermediates **6** and **7**, which undergo the elimination of imidazole thus forming **8**. The structure of **8** was unequivocally

confirmed by NMR and IR spectroscopy, mass spectrometry and elemental analysis. In a similar manner, *m-tert*-butyloxy-carbonylaminophenyl-3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidenepyrrolidine-2,5-dione **9** and *p-tert*-butyloxy-carbonylaminophenyl-3-[Z- α -(2,5-dimethyl-3-thienyl)ethylidene]-4-isopropylidenepyrrolidine-2,5-dione **10** were prepared in 50‡ and 70% yields, respectively.

References

- 1 A. P. Glaze, S. A. Harris, H. G. Heller, W. Johncock, S. N. Oliver, P. J. Strydom and J. Whittall, *J. Chem. Soc.*, *Perkin Trans. 1*, 1985, 957.
- 2 R. J. Cotter, C. K. Sauers and J. M. Whelan, J. Org. Chem., 1961, 26, 10.
- 3 N. Brosse, M. F. Pinto and B. Jamart-Gregoire, J. Org. Chem., 2000, 65, 4370.
- M. Mader and P. Helquist, Tetrahedron Lett., 1988, 29, 3049.
- 5 P. Y. Reddy, S. Kondo, T. Toru and Y. Ueno, J. Org. Chem., 1997, 62, 2652.
- 6 (a) R. P. Polniaszek, S. E. Belmont and R. Alvarez, J. Org. Chem., 1990, 55, 215; (b) I. S. Blagbrough, P. A. Coates, D. J. Hardick, T. Lewis, M. G. Rowan, S. Wonnacott and B. V. L. Potter, Tetrahedron Lett., 1994, 35, 8705

Received: 16th April 2003; Com. 03/2087

[†] Compounds **4**, **5** and **8–10** were characterised using spectroscopic methods and elemental analysis.

⁴ and **5**: MS, m/z: 390 (M⁺). IR (KBr, $v_{\text{max}}/\text{cm}^{-1}$): 1795, 1683.

⁸: ¹H NMR (250 MHz, CDCl₃) δ : 1.45 (s, 9H), 1.98 (s, 3H), 2.08 (s, 3H), 2.3 (s, 3H), 2.41 (s, 3H), 2.44 (s, 3H), 6.31 (s, 1H), 6.51 (s, 1H). MS, m/z: 391 (M + 1), 390 (M+), 319, 275, 260, 217, 203, 189, 137, 112, 57. IR (KBr, $\nu_{\rm max}/{\rm cm^{-1}}$): 1764, 1736, 1704, 1252, 1160, 804. Found (%): C, 61.44; H, 6.94; S, 8.04; N, 7.25. Calc. for $\rm C_{20}H_{26}N_2O_4S$ (%): C, 61.52; H, 6.71; S, 8.21; N, 7.17.

^{9:} $^{1}\mathrm{H}$ NMR (250 MHz, CDCl₃) δ : 1.49 (s, 9H), 2.02 (s, 3H), 2.12 (s, 3H), 2.33 (s, 3H), 2.39 (s, 3H), 2.47 (s, 3H), 6.48 (s, 1H), 6.54 (s, 1H), 6.97 (d, 1H, J 6.8 Hz), 7.24 (d, 1H, J 7.57 Hz), 7.30 (t, 1H, J 8.33 Hz), 7.41 (s, 1H). IR (KBr, ν_{max} cm $^{-1}$): 1756, 1720, 1700. Found (%): C, 67.04; H, 6.55; S, 6.87; N, 6.04. Calc. for $\mathrm{C_{26}H_{30}N_2O_4S}$ (%): C, 66.92; H, 6.48; S, 6.87; N, 6.00.

¹⁰: ^1H NMR (250 MHz, CDCl₃) δ : 1.51 (s, 9H), 2.02 (s, 3H), 2.12 (s, 3H), 2.33 (s, 3H), 2.4 (s, 3H), 2.48 (s, 3H), 6.51 (s, 1H), 6.54 (s, 1H), 7.23 (d, 2H, J 7.5 Hz), 7.37 (d, 2H, J 8.33 Hz). MS, m/z: 467 (M + 1). IR (KBr, $\nu_{\text{max}}/\text{cm}^{-1}$): 1756, 1728, 1708. Found (%): C, 66.65; H, 6.54; S, 6.37; N, 6.18. Calc. for $\text{C}_{26}\text{H}_{30}\text{N}_{2}\text{O}_{4}\text{S}$ (%): C, 66.92; H, 6.48; S, 6.87; N, 6.00.

 $^{^{\}ddagger}$ The intermediate amido acid was not isolated, and the yield was calculated for starting compound 2.